
An Algorithm for Further Decomposition of BCNF/3NF to Reduce the Query Cost

166

Manarat International University Studies, 2 (1): 166-176, December 2011

ISSN 1815-6754

@ Manarat International University, 2011

An Algorithm for Further Decomposition of BCNF/3NF to Reduce the

Query Cost

Md. Ashraful Islam


ABSTRACT

In this study we proposed an algorithm, which reduce the query cost in terms

of disk accesses. In BCNF/3NF relation the attributes are related with each

other by functional dependencies and a lot of attributes exists in a table,

which are dependent with each other. Huge number of attributes in a specific

relation with different purpose of use and using several times cause the query

cost high. In our proposed algorithm we prescribed to decompose a table,

which joined with different level of dependency in term of their use. In

specific period of time or for specific purpose different attributes are used but

not all simultaneously. For that we made some subsets of attributes with same

primary key and form several relation based on frequency of use or purpose

of use for a specific relation. Some attributes in a relation, that play more

than one role means they used several times or purpose and when we are

going to decompose a relation into several relation then the space increased.

Those are also considered as a problem. We have tried to reduce the query

cost according to less increase of space by considering trade-off between

excess spaces needed for replication of primary key in each decomposed

table.

Keywords: Algorithm, BCNF/3NF, Disk, Communication.

1. INTRODUCTION

Query Cost is measured in terms of disk accesses, CPU time to execute the query and

cost of communication. If query is executed in a single computer, the cost of

communication remains absent. Since the disk access is an order slower than memory and

CPU operations, the disk access time plays dominant role in query cost. The disk access

is the measure of the number of transfers of blocks from disk, which can be expressed

using the following formula [Silberschatz et al., 1999]

 br=(nr * sr)/ b

Where,

 br = number of blocks containing tuples of relation, r

 nr = number of tuples in the relation r, which are stored in a file

 sr = size of the type of relation r in bytes


 Bangladesh Islami University, 89/12, R.K Mission, Road,Dhaka-1203, Bangladesh,

Email: ashraful47@cse.iiuc.ac.bd

mailto:%20ashraful47@yahoo.com

Manarat International University Studies, 2 (1): 166-176, December 2011

167

 b = block size

The number of blocks br to be accessed for retrieving/updating a relation in a disk file

determines the query cost. The more the number of blocks in the relation, the more disk

access (thus more time) is required for executing a query on the relation.

For a given block size (b) and the number of tuples(nr) in a relation, the number of

blocks(br)(and therefore, the query cost) is directly proportional to the size of the

tuple(sr).That means that meaningful decomposition of a relation can reduce the query

update cost. Scientist had conducted studies for query optimization based on search

method for selection, join operation, project operation, set operation of query tree and

query graphs, and user-defined predicates, However, no such algorithm appears to have

been devised for reducing query cost based on decomposition of a relation.

Decomposition of a relation had been widely used for reducing redundancy, which

ultimately reduced the update anomalies such as insertion anomalies.

In this study an algorithm was developed for reduction of query cost by further

decomposition of a BCNF/3NF relation, based on frequency of use of the attributes or

groups of attributes identified by the purpose of their use. Here we identify the frequency

by counting the time of use of specific attributes and groups are considered by purpose of

using. The properties of the BCNF/3NF relations were kept intact into the decomposed

relations. The trade of between the excess space requirement due to replication of the

primary key and query cost reduction was considered while developing the algorithm.

This algorithm is applied on the relation of a banking, garments or others companies’

database and reduction in query cost was investigated.

2. Background of the problem

The problem was to reduce the query cost by decomposition of a BCNF/3NF relation.

Two types of dependencies were identified based on which the BCNF/3NF relation could

be decomposed. They are:

a) Frequency dependency and

b) Group dependency

The frequency dependencies of a relation were identified based on frequency of use of

attributes. The group dependencies were identified based on purpose of their use.

2.1 Frequency of use of the attributes

In practice, there may exist hundreds of attributes in a BCNF/3NF relation, but frequency

of use of individual attributes may vary substantially. Some attribute may be used and

updated very frequently and some are very rarely. Every time an attribute is updated, all

the attributes in the relation are handled. Thus, the update cost becomes unnecessarily

high. The scientists paid due attention on reducing redundancy, thereby eliminating

update anomalies. They have used decomposition of relations for reducing redundancy.

The technique of decomposition of relations may also be used for obtaining smaller

An Algorithm for Further Decomposition of BCNF/3NF to Reduce the Query Cost

168

relations based on dependency of attributes on their use-frequency. This may reduce the

query cost without loss of any of the property of normalization.

Let us consider the Bank-Account relation shown in Table 1, in which Account_No is the

primary key. The relation is in BCNF and therefore in 3NF, 2NF and 1NF also. Let there

be 1000 number of customers having 1000 accounts in the bank. Considering a block size

of 512 bytes, the total number of blocks (br) comes to 4672. Let us consider a case of

linear search. In a linear search, each block is scanned, and all records are tested to see

whether they satisfy the selection condition. Since all blocks have to be read, the

estimated cost E=br. For a selection on a key attribute, we assume that one-half of the

blocks will be searched before the record is found at which point the search can

terminate. The estimate in this case is E=br/2=2336 blocks per update.

From the experience, a blank Database Administrator (DBA) knows that each time a

customer makes a transaction, his balance is updated and Account_No, Currency, Status

are used for qualifying the transaction.

Table 1: Bank-Account relation

Attribute Name Size (Byte) Attribute Name Size (Byte)

Account_No 8 Status 5

Name 30 Balance 16

F_H_Name 30 Interest_Rate 8

Address 1 30 Interest_Accrued 16

Address 2 30 Interest_Paid 16

Address 3 30 Intt_Cal_Upto_Date 10

Telephone_No 30 Nominee 30

Account_Type 10 Introducer 30

Currency 5 Signature 1024

Opening_Date 10 Photograph 1024

Total (Bytes) 2392

If it is a cash withdrawal, Account_Type and Signature are also verified. Let on an

average, one such transaction per account per day is made. Interest is calculated on

monthly basis, thus Interest_Rate, Interest_Accrued, Interest_Paid and

Intt_Cal_Upto_Date are used once in a month. Other information is used rarely, say

quarterly on an average. Thus there are three distinct frequency dependencies in the

Bank_Account relation. These are:

(i) {Account_No, Account_Type, Currency, Status, Balance, Signature} f1

Manarat International University Studies, 2 (1): 166-176, December 2011

169

(ii) {Account_No, Interest_Rate, Interest_Accrued, Interest_Paid, Intt_Cal_Upto_Date}

f2

(iii) {Account_No, Name, F_H_Name, Address1, Address2, Address3, Telephone_No,

Opening_Date,

 Nominee, Introducer, Photograph} f3

 Where f1=daily, f2=monthly and f3=quarterly or in other words,

f1=300times in a year, f2=12 times in a year and f3=4 times in a year, if year is taken as

the base unit for the frequency. Based on the frequency dependencies, the relation may be

decomposed into three relations as shown in Figure 2. The size of tuple of each of the

here decomposed relations are 1068, 58 and 1282 bytes respectively. For the linear search

and 1000 tuples in each of the relation, the estimated costs are 1043, 56 and 1252 blocks

per update respectively (this is the number of times the disk needs to access the database

for each update). Therefore, the total cost per year before and after decomposition comes

to:

 i) Before decomposition: 2336 blocks per update*(3000+12+4) updates per

year

 = 7, 38,176 blocks per year

 ii) After decomposition: (1043*300) + (56*12) + (1252*4)

 = 3, 18,580 blocks per year

Saving in access time is 56.84%.

2.2 Classification of attributes into groups based on purpose of use

Some relation in BCNF/3NF may contain attributes, which are used for different

purposes at different time units. However the frequency of use of these attributes is

almost same for a particular time period. For example, let us consider the Cheque-Leaf

relation shown in Table 3.3. The primary key of the relation is Cheque_Leaf_No. The

relation is in BCNF. The size of the relation is 75 bytes. Considering 1000 tuples and a

block size of 512 bytes, the update cost of the relation becomes 73 blocks.

An Algorithm for Further Decomposition of BCNF/3NF to Reduce the Query Cost

170

Table 2: Bank-Account relation decomposed into three relations:

There are four groups of attributes in the relation used at different times for

different purposes. When a branch receives cheque leaves from the Head Office, they

make entry of the same into the relation in which case the Cheque_Leaf_No and the

Receiving_Date update. When few of the cheque_leaves inserted earlier into the database

are issued to a particular customer, Account_No and Issue_Date attributes are updated

against the cheque_Leaf_No issued at this time to the customer. When the customer

presents the cheque leaf to the bank counter for withdrawal of money, the cashier makes

entry of the cheque leaf particulars into the computer, and Payment_Amt and

Payment_Date attributes are updated. If a customer loses a cheque leaf, he informs it to

the bank authority and the bank makes it stop payment. In this process, the Stop_Payment

and Stop_Pay_Date attributes are updated. Thus we observed that the relation has four

distinct groups of attribute, which are used for four different purposes and updated

separately. Decomposition of this relation into four relations based on the purposes or in

other words, based on their use at different time units, may reduce the query cost.

Account_Transaction

Relation

Account_I

nterest

Relation

Account_Other Relation

Attribute Name Size

In

Byte

Attribute

Name

Size

In

Byte

Attribute Name Size

in

byte

Account_No 8 Account_N

o

8 Account_No 8

Account_Type 10 Interest_

Rate

8 Name 30

Currency 5 Interest_

Accrued

16 F_H_Name 30

Status 5 Interest_

Paid

16 Address1 30

Balance 16 Intt_Cal_U

pto_Date

10 Address2 30

Signature 1024 Address3 30

 Telephone_No 30

 Opening_Date 10

 Nominee 30

 Introducer 30

 Photograph 1024

Total Size 1068 Total Size 58 Total Size 1282

Manarat International University Studies, 2 (1): 166-176, December 2011

171

Table 3: Cheque-leaf relation

Attribute

Name

Size(Byt

e)

Attribute Name Size(Byte)

Cheque_Leaf_

No

10 Payment_Amt 16

Receiving_Date 10 Payment_Date 10

Account_No 8 Stop_Payment 1

Issue_Date 10 Stop_Pay_Date 10

Total(Bytes) 75

The four dependency functions of the relation of Table-3 are as under:

i) {Cheque_Leaf_No, Receiving_Date}------→ g1

ii) {Cheque_Leaf_No, Account_No,Issue_Date} g2

iii) {Cheque_Leaf_No, Payment_Amt,Payment_Date}  g3

iv) {Cheque_Leaf_No, Stop_Payment, Stop_Pay_Date}  g4

 Where g1, g2, g3 and g4 are four groups of attributes representing different

purposes or time units in which they are used together.Based on the group dependencies,

the relation may be decomposed into four relations such as ,

R1 (Cheque_Leaf_No, Receiving_Date),

 R2 (Cheque_Leaf_No, Account_No, Issue_Date), R3 (Cheque_Leaf_No, Payment_Amt,

Payment_Date) and R4(Cheque_Leaf_No, Stop_Payment, Stop_Pay_Date). The sizes of

tuple of each of the four decomposed relations are 20, 28, 36 and 21 bytes respectively.

For the linear search and 1000 tuples in each of the relation, the estimated costs are 39,

54, 70 and 41 blocks per update respectively.

Considering that 1000 number of cheque leaves are received from Head Office of the

bank in a month, these cheque leaves are issued to 100 customers, these customers use

950 leaves for cash withdrawal and rest 50 cheque leaves are made stop payment due to

losses or damages, the total cost per month before and after decomposition comes to:

 i) Before Decomposition: 73 blocks per update*

(1000+1000+950+50) updates per month

 = 2, 19,000 blocks per month

 ii) After Decomposition: (39*1000) + (54*1000) + (70*950) + (41*50)

 =1, 61,550 blocks per month

Saving in access time is 26.23%

Therefore, it may be resolved that the BCNF/3NF relations having more than one

dependency functions determined either by “use of frequency” or “group on different

purposes”, can further be decomposed to obtain smaller BCNF/3NF relations which will

An Algorithm for Further Decomposition of BCNF/3NF to Reduce the Query Cost

172

reduce the query cost over a given period of time. Keeping this in view, a formal

algorithm has to be developed to decompose the original relation into smaller ones.

3. The Proposed Algorithms

In developing the basic algorithm, the relation in BCNF/3NF was first examined for

presence of (i) more than one distinct frequency of use of attributes or (ii) more than one

distinct groups classified by purpose of use of the attributes. Based on the distinct

frequencies or groups, dependency functions were created. For each of the dependency

fountains, one relation consisting of the primary key and the dependent attributes was

created. Keeping primary key along with along with all the new relations ensure the

properties of the original relation into the decomposed relations. The algorithm thus

created, called basic algorithm, does not consider (i) the attribute common in more than

one dependency functions and (ii) trade-off between the excess space needed for

replication of primary key and the savings in query cost. The basic algorithm is presented

below:

Algorithm-1: The basic algorithm for further decomposition of the BCNF/3NF relation

Let us consider a relation R= (A, B, C, D, E, F, G), where {A, B} is the primary key. Let

there are two dependency functions f1 and f2, and their dependency with the attributes

other than primary key are as under:

 {C, D, E}f1 {E, F, G}f2

Therefore, according to step-3 of the algorithm, we decompose R into two relations as

under: R1= (A, B, C, D, E), R2= (A, B, E, F, G)

Considering that every attributes has a size if 10 bytes, block size of 512 bytes, number of

tuples of 1000 in the relation, f1 represents “daily” in ayear domain, and f2 represents

“monthly”, the query cost per year was found as under:

(a) For the original relation R:

 Query cost = ((70*1000/512)/2)*(365+13)

 =25,771 blocks

 (b) For the decomposed relations R1 & R2: Query cost =

((50*1000/512)/2)*365 + ((50*1000/512)/2)*12

 = 18,408 blocks

The saving in query cost is 28.57%.

Algorithm- 2: Algorithm considering a new relation for common attributes.

1. Identify the distinct frequencies or groups, fi 1≤i≤n in the relation R based on either frequency

of use or group on purpose of use of the attributes, where n is the total number of occurrences

of use-frequencies or groups. If n=1 terminate the algorithm.

2. Except the primary key Ak, create dependency functions Aifi where Ai is a subset of

attributes that occurs during fi.

3. For every dependency functions, create a relation consisting of the primary key Ak and the

attributes Ai of the dependency functions.

Manarat International University Studies, 2 (1): 166-176, December 2011

173

Algorithm-3: Algorithm keeping common attributes with lowest order relation.

If we apply algorithm-2 to the relation R= (A, B, C, D, E, F) of section 2.1, we obtain

the following three relation:

The following three relations:

 R1= (A, B, C, D), R2= (A, B, F, G), R3= (A, B, E)

As we know from section 2.1, the total query of the original relation was 25,771 blocks

and that of relations obtained from algorithm-1 was 18,408 blocks. For the decomposed

relations R1, R2 and R3 obtained from algorithm-2, the query cost was ((40*1000/512)/2)

*365 + ((40*1000/512)/2) *12 + ((30*1000/512)/2) * (365+12) = 25,771 blocks. This

showed that algorithm-5.2 did not reduce the query cost over algorithm-1.

If we apply algorithm-3 to the relation of section algorithm-1, we obtain the following

two relations:

R1= (A, B, C, D, E), R2= (A, B, F, G)

For the decomposed relations R1 and R2 obtained from algorithm-3, the query cost was

((50*1000/512)/2)*(365+12) + ((40*1000/512)/2)*12=18,877 blocks. This showed that

algorithm-3 also did not improve the query cost over algorithm-1. Step-4 of algorithm-3

suggested keeping the common attributes with lowest order relation. We can examine the

consequence of keeping the common attributes (i) with the highest order relation and (ii)

with the relation having fewer attributes. Changing step-4 of the algorithm-3 accordingly,

does not reduce the query cost over algorithm-1.Therefore, it may be resolved that

common attributes to be kept with the respective relations where they naturally appears as

per dependency functions.

1. Identify the distinct frequencies or groups, fi≤i≤n in the relation R based on either

frequency of use or groups on purpose of use of the attributes, where n is the total number

of occurrence of use-frequencies or groups. If n=1 terminate the algorithm.

2. Except the primary key Ak create dependency functions Aifi where Ai is a subset of

attributes that occurs during fi.

3. For every dependency functions, create a relation consisting of the primary key Ak and the

attributes Ai of the dependency functions.

4. Create a relation for all the attributes common to more than one dependency functions

taking Ak as primary key and delete these attributes from the relations created at step-3.

5. After deletion operation at step-4, if one or more relation contains only the primary key Ak,

drop that relation.

1. Identify the distinct frequencies or groups, fi≤i≤n in the relation R based on either

frequency of use or group on purpose of the attributes, where n is the total number of

occurrence of use-frequencies or groups. If n=1 terminate the algorithm.

2. Except the primary key Ak, create dependency functions Aifi where Ai is a sub-set of

attributes that occurs during fi.

3. For every dependency functions, create a relation consisting of the primary key Ak and the

attributes Ai of the dependency functions.

4. Keep the common attributes with the lowest order relation and delete them from the rest.

5. After deletion operation at step-4, if one or more relation contains only the primary key

Ak, drop that relation.

An Algorithm for Further Decomposition of BCNF/3NF to Reduce the Query Cost

174

 Considering trade-off between excess spaces needed for replication of primary key:

One of the objectives of this study was to retain the properties of BCNF/3NF into the

resultant relations. To follow this objective, we must replicate the primary key of the

original relation into the new relations. This, on the other hand, increases the storage

requirement of the database system. Let us consider a relation R= (A, B, C, D, E, F, and

G) having primary key {A, B} with the dependency functions as under:

{C}f1(daily, i.e., 300 times in a year)

{D}f2(weekly, i.e., 52 times in a year)

{E}f3(monthly, i.e., 12 times in a year)

{F}f4(quarterly, i.e., 4 times in a year)

{G}f5(yearly, i.e., once in a year)

According to the algorithm-1 (which is optimum so far), we obtain following five

relations:

R1= (A, B, C), R2= (A, B, D),

R3= (A, B, E), R4= (A, B, F), R5= (A, B, G)

Let the size of each of the attributes is 10 bytes, the block size is 512 bytes and there are

1000 tuples in the relation. Therefore, the query cost of the original relation R is

((70*1000) 512)/2*(300+52+12+4+1)= 24,541 blocks. The query cost of the decomposed

relations is ((30 * 1000 /512) /2) * 300 + ((30 * 1000 /512) /2 * 52 + ((30 * 1000 /512)

/2) * 12 + ((30 * 1000 /512) /2) * 4 + ((30 * 1000 /512) /2) * 1 = 10,810 blocks which is

55.95% less than that of original relation.

The size of the original relation was 70 bytes whereas the total size of the decomposed

relations is 150 bytes, which is an increase of 114% over the size of the original relation.

Algorithm-1 awarded us with the reduction in query cost but it also increases the total

space requirement. Therefore a trade-off is required between the reduction in query cost

and increases in total storage requirement. Adding steps 4 and 5 in the algorithm-5.1,

which is shown below, implement this:

Algorithm-4: Decomposition of the BCNF/3NF relation considering trade-off.

1. Identify the distinct dependency functions fi  I  n in the relation R based in either “frequency

of use” or “group of purpose of use” of the attributes, where n is the total number of occurrence

of use-frequencies or groups. If n =1 terminate the algorithm.

2. Except the primary key Ak, create dependency functions Aifi where Ai is a sub-set of

attributes that occurs during fi.

3. For every dependency functions, create a relation consisting of the primary key Ak and the

attributes that occurs during fi.

4. Let So and Sd be the storage requirement for the original relation and the decomposed relations.

5. while Sd/So  k, where k is a constant to be determined by the DBA.

(a) merge the two relations having nearest dependency functions.

Compute Sd for the new relations.

Manarat International University Studies, 2 (1): 166-176, December 2011

175

After application of steps 1 to 3 of algorithm-5.4 on the relation R of the above example

we obtained following five relations:

R1= (A, B, C) with dependency constraint f1 (daily, i.e., 300 times in a year)

R2= (A, B, D) with dependency constraint f2 (weekly, i.e., 52 times in a year)

R3= (A, B, E) with dependency constraint f3 (monthly, i.e., 12 times in a year)

R4= (A, B, F) with dependency constraint f4 (quarterly, i.e., 4 times in a year)

R5= (A, B, G) with dependency constraint f5 (yearly, i.e., once in a year)

Let k=2. We have Sd/So=150/70=2.14, which is greater than k. thus, according to steps-4

and 5 of the algorithm, we have to merge R4 and R5 resulting following relations:

 R1=(A, B, C) with dependency constraint f1(daily, i.e., 300 times in a year)

 R2=(A, B, D) with dependency constraint f2(daily, i.e., 52 times in a year)

 R3=(A, B, E) with dependency constraint f3(daily, i.e., 12 times in a year)

 R45=(A, B, F, G) with dependency constraint f4(daily, i.e., 4& 1 times in a year)

Now we have Sd/So=130/70=1.86 which is less than k. here we exit the loop and stop the

algorithm. In the resultant relations, we obtained a reduction of 55.75% in query cost

against an increase of 85.71% in space requirement. If we need further reduction in space

requirement, we have to take the value of k less than 1.86 and allow increase in

percentage of reduction in query cost.

4. Conclusion

The algorithm mainly based on the properties of BCNF/3NF.By applying the algorithm

we can reduce the query cost. And we also apply linear search method where each block

are scanned, and all records are tested to see weather they satisfy the condition. This

algorithm can be applied in different organizations that maintain their software by

database to reduce their query cost. There are some problem arise such that for reducing

the query cost the space complexity increase successively. We try to overcome the

problem by reducing the cost according a little amount space by considering trade –off.

And the algorithm was found most economical in the scenario of practical life.

5. REFERENCES

Codd E. (1972). Further normalization of database relational model. Cited in the book

“Database Systems” edited by Rustin R.

Codd E. (1974). Recent investigation in Relational Database Systems. Proc. Of the

International Federation for Information Processing (IFIP) Congress.

elmasri R. and Navathe S. B. (2000). Fundamentals of Database Systems. 3
rd

 Ed. Addison

Wesley (Singapore) Pte. Ltd.

An Algorithm for Further Decomposition of BCNF/3NF to Reduce the Query Cost

176

fagin R. (1977). Multivalued Dependencies and a New Normal Form for Relational

Database ACM Transactions on Database Systems (TODS), 2:3, September,

1977.

fagin R. (1979). Normal Form and Relational Database Operators. In proc. Of the ACM

SIGMOD International Conference on Management of Data. P 153-160.

fagin R. (1981). A Normal Form for Relational Database. That is based on Domains and

Keys. ACM Transactions in Database Systems (TODS), 6:3, September, 1981.

grant, j (1987). Logical Introduction to Databases. Harcourt Brace Juvanovich, Inc.

Florida.

nambiar K.K., Gopinath B., Nagraj T. and .Manjunath S(1997). Boyee-Codd Normal

Form Decomposition. Computer Math. Apple. Vol. 33. no. 4, ppl-3.

Nicolas, j (1978). Mutual Dependencies and some results on Undecomposable relations.

In proc. Of the International Conference on Very Large Database(VLDB).

Silverschatz A., Korth H. F., Sudarshan S. (1999). Database System Concepts. 3
rd

 ed.

Mc-Graw Hill Companies.

